You can also find my articles on my Google Scholar Profile.
Research Topics:Show all by date / Show all by topic / Show selected

Multimodal Machine Learning

AlignNet: A Unifying Approach to Audio-Visual Alignment
Jianren Wang*, Zhaoyuan Fang*, Hang Zhao (* indicates equal contribution)
2020 Winter Conference on Applications of Computer Vision
[Project Page] [Code] [Data] [Abstract] [Bibtex]

We present AlignNet, a model designed to synchronize a video with a reference audio under non-uniform and irregular misalignment. AlignNet learns the end-to-end dense correspondence between each frame of a video and an audio. Our method is designed according to simple and well-established principles: attention, pyramidal processing, warping, and affinity function. Together with the model, we release a dancing dataset Dance50 for training and evaluation. Qualitative, quantitative and subjective evaluation results on dance-music alignment and speech-lip alignment demonstrate that our method far outperforms the state-of-the-art methods.

    Author = {Wang, Jianren and Fang, Zhaoyuan
            and Zhao, Hang},
    Title = {AlignNet: A Unifying Approach to Audio-Visual Alignment},
    Booktitle = {WACV},
    Year = {2020}